Cubics and negative curvature

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality and Riemannian cubics

Riemannian cubics are curves used for interpolation in Riemannian manifolds. Applications in trajectory planning for rigid bodiy motion emphasise the group SO(3) of rotations of Euclidean 3-space. It is known that a Riemannian cubic in a Lie group G with bi-invariant Riemannian metric defines a Lie quadratic V in the Lie algebra, and satisfies a linking equation. Results of the present paper in...

متن کامل

Mannifolds of Negative Curvature

A C∞ function f on a riemannian manifold M is convex provided its hessian (second covariant differential) is positive semidefinite, or equivalently if (f ◦σ)′′ ≥ 0 for every geodesic inM . We shall apply this notion in a variety of ways to the study of manifolds of negative or nonpositive curvature. Convexity has, of course, long been associated with negative curvature, but convex function seem...

متن کامل

Collineations, Conjugacies, and Cubics

If F is an involution and φ a suitable collineation, then φ ◦ F ◦ φ−1 is an involution; this form includes well-known conjugacies and new conjugacies, including aleph, beth, complementary, and anticomplementary. If Z(U) is the self-isogonal cubic with pivot U , then φ carries Z(U) to a pivotal cubic. Particular attention is given to the Darboux and Lucas cubics, D and L, and conjugacy-preservin...

متن کامل

Ramanujan-nagell Cubics

A well-known result of Beukers [3] on the generalized Ramanujan-Nagell equation has, at its heart, a lower bound on the quantity |x2 − 2n|. In this paper, we derive an inequality of the shape |x3 − 2n| ≥ x4/3, valid provided x3 6= 2n and (x, n) 6= (5, 7), and then discuss its implications for a variety of Diophantine problems.

متن کامل

Rigidity in Non-negative Curvature

In this paper we will show that any complete manifold of nonnegative curvature has a flat soul provided it has curvature going to zero at infinity. We also show some similar results about manifolds with bounded curvature at infinity. To establish these theorems we will prove some rigidity results for Riemannian submersions, eg., any Riemannian submersion with complete flat total space and compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2012

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2012.09.004